Metamath Proof Explorer


Theorem wun0

Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypothesis wun0.1 φUWUni
Assertion wun0 φU

Proof

Step Hyp Ref Expression
1 wun0.1 φUWUni
2 iswun UWUniUWUniTrUUxUxU𝒫xUyUxyU
3 2 ibi UWUniTrUUxUxU𝒫xUyUxyU
4 3 simp2d UWUniU
5 1 4 syl φU
6 n0 UxxU
7 5 6 sylib φxxU
8 1 adantr φxUUWUni
9 simpr φxUxU
10 0ss x
11 10 a1i φxUx
12 8 9 11 wunss φxUU
13 7 12 exlimddv φU