Metamath Proof Explorer


Theorem wunco

Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wun0.1 φUWUni
wunop.2 φAU
wunco.3 φBU
Assertion wunco φABU

Proof

Step Hyp Ref Expression
1 wun0.1 φUWUni
2 wunop.2 φAU
3 wunco.3 φBU
4 1 3 wundm φdomBU
5 dmcoss domABdomB
6 5 a1i φdomABdomB
7 1 4 6 wunss φdomABU
8 1 2 wunrn φranAU
9 rncoss ranABranA
10 9 a1i φranABranA
11 1 8 10 wunss φranABU
12 1 7 11 wunxp φdomAB×ranABU
13 relco RelAB
14 relssdmrn RelABABdomAB×ranAB
15 13 14 mp1i φABdomAB×ranAB
16 1 12 15 wunss φABU