Metamath Proof Explorer


Theorem wunex3

Description: Construct a weak universe from a given set. This version of wunex has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypothesis wunex3.u U=R1rankA+𝑜ω
Assertion wunex3 AVUWUniAU

Proof

Step Hyp Ref Expression
1 wunex3.u U=R1rankA+𝑜ω
2 r1rankid AVAR1rankA
3 rankon rankAOn
4 omelon ωOn
5 oacl rankAOnωOnrankA+𝑜ωOn
6 3 4 5 mp2an rankA+𝑜ωOn
7 peano1 ω
8 oaord1 rankAOnωOnωrankArankA+𝑜ω
9 3 4 8 mp2an ωrankArankA+𝑜ω
10 7 9 mpbi rankArankA+𝑜ω
11 r1ord2 rankA+𝑜ωOnrankArankA+𝑜ωR1rankAR1rankA+𝑜ω
12 6 10 11 mp2 R1rankAR1rankA+𝑜ω
13 12 1 sseqtrri R1rankAU
14 2 13 sstrdi AVAU
15 limom Limω
16 4 15 pm3.2i ωOnLimω
17 oalimcl rankAOnωOnLimωLimrankA+𝑜ω
18 3 16 17 mp2an LimrankA+𝑜ω
19 r1limwun rankA+𝑜ωOnLimrankA+𝑜ωR1rankA+𝑜ωWUni
20 6 18 19 mp2an R1rankA+𝑜ωWUni
21 1 20 eqeltri UWUni
22 14 21 jctil AVUWUniAU