| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wunex3.u |
|- U = ( R1 ` ( ( rank ` A ) +o _om ) ) |
| 2 |
|
r1rankid |
|- ( A e. V -> A C_ ( R1 ` ( rank ` A ) ) ) |
| 3 |
|
rankon |
|- ( rank ` A ) e. On |
| 4 |
|
omelon |
|- _om e. On |
| 5 |
|
oacl |
|- ( ( ( rank ` A ) e. On /\ _om e. On ) -> ( ( rank ` A ) +o _om ) e. On ) |
| 6 |
3 4 5
|
mp2an |
|- ( ( rank ` A ) +o _om ) e. On |
| 7 |
|
peano1 |
|- (/) e. _om |
| 8 |
|
oaord1 |
|- ( ( ( rank ` A ) e. On /\ _om e. On ) -> ( (/) e. _om <-> ( rank ` A ) e. ( ( rank ` A ) +o _om ) ) ) |
| 9 |
3 4 8
|
mp2an |
|- ( (/) e. _om <-> ( rank ` A ) e. ( ( rank ` A ) +o _om ) ) |
| 10 |
7 9
|
mpbi |
|- ( rank ` A ) e. ( ( rank ` A ) +o _om ) |
| 11 |
|
r1ord2 |
|- ( ( ( rank ` A ) +o _om ) e. On -> ( ( rank ` A ) e. ( ( rank ` A ) +o _om ) -> ( R1 ` ( rank ` A ) ) C_ ( R1 ` ( ( rank ` A ) +o _om ) ) ) ) |
| 12 |
6 10 11
|
mp2 |
|- ( R1 ` ( rank ` A ) ) C_ ( R1 ` ( ( rank ` A ) +o _om ) ) |
| 13 |
12 1
|
sseqtrri |
|- ( R1 ` ( rank ` A ) ) C_ U |
| 14 |
2 13
|
sstrdi |
|- ( A e. V -> A C_ U ) |
| 15 |
|
limom |
|- Lim _om |
| 16 |
4 15
|
pm3.2i |
|- ( _om e. On /\ Lim _om ) |
| 17 |
|
oalimcl |
|- ( ( ( rank ` A ) e. On /\ ( _om e. On /\ Lim _om ) ) -> Lim ( ( rank ` A ) +o _om ) ) |
| 18 |
3 16 17
|
mp2an |
|- Lim ( ( rank ` A ) +o _om ) |
| 19 |
|
r1limwun |
|- ( ( ( ( rank ` A ) +o _om ) e. On /\ Lim ( ( rank ` A ) +o _om ) ) -> ( R1 ` ( ( rank ` A ) +o _om ) ) e. WUni ) |
| 20 |
6 18 19
|
mp2an |
|- ( R1 ` ( ( rank ` A ) +o _om ) ) e. WUni |
| 21 |
1 20
|
eqeltri |
|- U e. WUni |
| 22 |
14 21
|
jctil |
|- ( A e. V -> ( U e. WUni /\ A C_ U ) ) |