Metamath Proof Explorer


Theorem wunf

Description: A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 φUWUni
wunop.2 φAU
wunop.3 φBU
wunf.3 φF:AB
Assertion wunf φFU

Proof

Step Hyp Ref Expression
1 wun0.1 φUWUni
2 wunop.2 φAU
3 wunop.3 φBU
4 wunf.3 φF:AB
5 1 3 2 wunmap φBAU
6 1 5 wunelss φBAU
7 3 2 elmapd φFBAF:AB
8 4 7 mpbird φFBA
9 6 8 sseldd φFU