Metamath Proof Explorer


Theorem wunndx

Description: Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wunndx.1 φUWUni
wunndx.2 φωU
Assertion wunndx φndxU

Proof

Step Hyp Ref Expression
1 wunndx.1 φUWUni
2 wunndx.2 φωU
3 df-ndx ndx=I
4 1 2 wuncn φU
5 nnsscn
6 5 a1i φ
7 1 4 6 wunss φU
8 f1oi I:1-1 onto
9 f1of I:1-1 ontoI:
10 8 9 mp1i φI:
11 1 7 7 10 wunf φIU
12 3 11 eqeltrid φndxU