Metamath Proof Explorer
Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
wununi.1 |
|
|
|
wununi.2 |
|
|
|
wunpr.3 |
|
|
|
wuntp.3 |
|
|
Assertion |
wuntp |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wununi.1 |
|
| 2 |
|
wununi.2 |
|
| 3 |
|
wunpr.3 |
|
| 4 |
|
wuntp.3 |
|
| 5 |
|
tpass |
|
| 6 |
|
dfsn2 |
|
| 7 |
1 2 2
|
wunpr |
|
| 8 |
6 7
|
eqeltrid |
|
| 9 |
1 3 4
|
wunpr |
|
| 10 |
1 8 9
|
wunun |
|
| 11 |
5 10
|
eqeltrid |
|