Metamath Proof Explorer
Description: A weak universe is closed under binary union. (Contributed by Mario
Carneiro, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
wununi.1 |
|
|
|
wununi.2 |
|
|
|
wunpr.3 |
|
|
Assertion |
wunun |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wununi.1 |
|
| 2 |
|
wununi.2 |
|
| 3 |
|
wunpr.3 |
|
| 4 |
|
uniprg |
|
| 5 |
2 3 4
|
syl2anc |
|
| 6 |
1 2 3
|
wunpr |
|
| 7 |
1 6
|
wununi |
|
| 8 |
5 7
|
eqeltrrd |
|