Metamath Proof Explorer


Theorem wunpr

Description: A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 φUWUni
wununi.2 φAU
wunpr.3 φBU
Assertion wunpr φABU

Proof

Step Hyp Ref Expression
1 wununi.1 φUWUni
2 wununi.2 φAU
3 wunpr.3 φBU
4 iswun UWUniUWUniTrUUxUxU𝒫xUyUxyU
5 4 ibi UWUniTrUUxUxU𝒫xUyUxyU
6 5 simp3d UWUnixUxU𝒫xUyUxyU
7 simp3 xU𝒫xUyUxyUyUxyU
8 7 ralimi xUxU𝒫xUyUxyUxUyUxyU
9 1 6 8 3syl φxUyUxyU
10 preq1 x=Axy=Ay
11 10 eleq1d x=AxyUAyU
12 preq2 y=BAy=AB
13 12 eleq1d y=BAyUABU
14 11 13 rspc2va AUBUxUyUxyUABU
15 2 3 9 14 syl21anc φABU