Metamath Proof Explorer
		
		
		
		Description:  A weak universe is closed under unordered triple.  (Contributed by Mario Carneiro, 2-Jan-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | wununi.1 |  | 
					
						|  |  | wununi.2 |  | 
					
						|  |  | wunpr.3 |  | 
					
						|  |  | wuntp.3 |  | 
				
					|  | Assertion | wuntp |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wununi.1 |  | 
						
							| 2 |  | wununi.2 |  | 
						
							| 3 |  | wunpr.3 |  | 
						
							| 4 |  | wuntp.3 |  | 
						
							| 5 |  | tpass |  | 
						
							| 6 |  | dfsn2 |  | 
						
							| 7 | 1 2 2 | wunpr |  | 
						
							| 8 | 6 7 | eqeltrid |  | 
						
							| 9 | 1 3 4 | wunpr |  | 
						
							| 10 | 1 8 9 | wunun |  | 
						
							| 11 | 5 10 | eqeltrid |  |