Metamath Proof Explorer
Description: The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xaddcomd.1 |
|
|
|
xaddcomd.2 |
|
|
Assertion |
xaddcomd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xaddcomd.1 |
|
| 2 |
|
xaddcomd.2 |
|
| 3 |
|
xaddcom |
|
| 4 |
1 2 3
|
syl2anc |
|