Metamath Proof Explorer


Theorem xaddcomd

Description: The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xaddcomd.1 φA*
xaddcomd.2 φB*
Assertion xaddcomd φA+𝑒B=B+𝑒A

Proof

Step Hyp Ref Expression
1 xaddcomd.1 φA*
2 xaddcomd.2 φB*
3 xaddcom A*B*A+𝑒B=B+𝑒A
4 1 2 3 syl2anc φA+𝑒B=B+𝑒A