Metamath Proof Explorer


Theorem xchbinxr

Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)

Ref Expression
Hypotheses xchbinxr.1 φ ¬ ψ
xchbinxr.2 χ ψ
Assertion xchbinxr φ ¬ χ

Proof

Step Hyp Ref Expression
1 xchbinxr.1 φ ¬ ψ
2 xchbinxr.2 χ ψ
3 2 bicomi ψ χ
4 1 3 xchbinx φ ¬ χ