Metamath Proof Explorer


Theorem xfree

Description: A partial converse to 19.9t . (Contributed by Stefan Allan, 21-Dec-2008) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion xfree x φ x φ x x φ φ

Proof

Step Hyp Ref Expression
1 nf5 x φ x φ x φ
2 nf6 x φ x x φ φ
3 1 2 bitr3i x φ x φ x x φ φ