Metamath Proof Explorer


Theorem xfree

Description: A partial converse to 19.9t . (Contributed by Stefan Allan, 21-Dec-2008) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion xfree ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑𝜑 ) )

Proof

Step Hyp Ref Expression
1 nf5 ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) )
2 nf6 ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑𝜑 ) )
3 1 2 bitr3i ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑𝜑 ) )