Metamath Proof Explorer


Theorem xfree2

Description: A partial converse to 19.9t . (Contributed by Stefan Allan, 21-Dec-2008)

Ref Expression
Assertion xfree2 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 xfree ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑𝜑 ) )
2 eximal ( ( ∃ 𝑥 𝜑𝜑 ) ↔ ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
3 2 albii ( ∀ 𝑥 ( ∃ 𝑥 𝜑𝜑 ) ↔ ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
4 1 3 bitri ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )