Metamath Proof Explorer


Theorem xfree2

Description: A partial converse to 19.9t . (Contributed by Stefan Allan, 21-Dec-2008)

Ref Expression
Assertion xfree2 x φ x φ x ¬ φ x ¬ φ

Proof

Step Hyp Ref Expression
1 xfree x φ x φ x x φ φ
2 eximal x φ φ ¬ φ x ¬ φ
3 2 albii x x φ φ x ¬ φ x ¬ φ
4 1 3 bitri x φ x φ x ¬ φ x ¬ φ