Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
2re |
|
3 |
2
|
a1i |
|
4 |
|
simpl |
|
5 |
|
1re |
|
6 |
5
|
a1i |
|
7 |
|
ltsub1 |
|
8 |
3 4 6 7
|
syl3anc |
|
9 |
|
2cn |
|
10 |
|
ax-1cn |
|
11 |
|
df-2 |
|
12 |
11
|
eqcomi |
|
13 |
9 10 10 12
|
subaddrii |
|
14 |
13
|
breq1i |
|
15 |
14
|
a1i |
|
16 |
8 15
|
bitrd |
|
17 |
1 16
|
mpbid |
|
18 |
|
simpr |
|
19 |
2
|
a1i |
|
20 |
|
simpl |
|
21 |
5
|
a1i |
|
22 |
|
ltsub1 |
|
23 |
19 20 21 22
|
syl3anc |
|
24 |
13
|
breq1i |
|
25 |
24
|
a1i |
|
26 |
23 25
|
bitrd |
|
27 |
18 26
|
mpbid |
|
28 |
17 27
|
anim12i |
|
29 |
28
|
an4s |
|
30 |
|
peano2rem |
|
31 |
|
peano2rem |
|
32 |
30 31
|
anim12i |
|
33 |
32
|
anim1i |
|
34 |
|
mulgt1 |
|
35 |
33 34
|
syl |
|
36 |
35
|
ex |
|
37 |
36
|
adantr |
|
38 |
|
recn |
|
39 |
10
|
a1i |
|
40 |
38 39
|
jca |
|
41 |
|
recn |
|
42 |
10
|
a1i |
|
43 |
41 42
|
jca |
|
44 |
40 43
|
anim12i |
|
45 |
|
mulsub |
|
46 |
44 45
|
syl |
|
47 |
46
|
breq2d |
|
48 |
47
|
biimpd |
|
49 |
48
|
adantr |
|
50 |
10
|
mulid2i |
|
51 |
|
eqcom |
|
52 |
51
|
biimpi |
|
53 |
50 52
|
mp1i |
|
54 |
53
|
oveq2d |
|
55 |
|
mulid1 |
|
56 |
|
eqcom |
|
57 |
56
|
biimpi |
|
58 |
55 57
|
syl |
|
59 |
38 58
|
syl |
|
60 |
59
|
adantr |
|
61 |
|
mulid1 |
|
62 |
41 61
|
syl |
|
63 |
|
eqcom |
|
64 |
63
|
biimpi |
|
65 |
62 64
|
syl |
|
66 |
65
|
adantl |
|
67 |
60 66
|
oveq12d |
|
68 |
54 67
|
oveq12d |
|
69 |
68
|
breq2d |
|
70 |
|
readdcl |
|
71 |
5
|
a1i |
|
72 |
|
remulcl |
|
73 |
|
readdcl |
|
74 |
72 71 73
|
syl2anc |
|
75 |
|
ltaddsub2 |
|
76 |
70 71 74 75
|
syl3anc |
|
77 |
|
ltadd1 |
|
78 |
70 72 71 77
|
syl3anc |
|
79 |
78
|
bicomd |
|
80 |
79
|
biimpd |
|
81 |
76 80
|
sylbird |
|
82 |
69 81
|
sylbird |
|
83 |
82
|
adantr |
|
84 |
37 49 83
|
3syld |
|
85 |
29 84
|
mpd |
|