Metamath Proof Explorer


Theorem addltmulALT

Description: A proof readability experiment for addltmul . (Contributed by Stefan Allan, 30-Oct-2010) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion addltmulALT A B 2 < A 2 < B A + B < A B

Proof

Step Hyp Ref Expression
1 simpr A 2 < A 2 < A
2 2re 2
3 2 a1i A 2 < A 2
4 simpl A 2 < A A
5 1re 1
6 5 a1i A 2 < A 1
7 ltsub1 2 A 1 2 < A 2 1 < A 1
8 3 4 6 7 syl3anc A 2 < A 2 < A 2 1 < A 1
9 2cn 2
10 ax-1cn 1
11 df-2 2 = 1 + 1
12 11 eqcomi 1 + 1 = 2
13 9 10 10 12 subaddrii 2 1 = 1
14 13 breq1i 2 1 < A 1 1 < A 1
15 14 a1i A 2 < A 2 1 < A 1 1 < A 1
16 8 15 bitrd A 2 < A 2 < A 1 < A 1
17 1 16 mpbid A 2 < A 1 < A 1
18 simpr B 2 < B 2 < B
19 2 a1i B 2 < B 2
20 simpl B 2 < B B
21 5 a1i B 2 < B 1
22 ltsub1 2 B 1 2 < B 2 1 < B 1
23 19 20 21 22 syl3anc B 2 < B 2 < B 2 1 < B 1
24 13 breq1i 2 1 < B 1 1 < B 1
25 24 a1i B 2 < B 2 1 < B 1 1 < B 1
26 23 25 bitrd B 2 < B 2 < B 1 < B 1
27 18 26 mpbid B 2 < B 1 < B 1
28 17 27 anim12i A 2 < A B 2 < B 1 < A 1 1 < B 1
29 28 an4s A B 2 < A 2 < B 1 < A 1 1 < B 1
30 peano2rem A A 1
31 peano2rem B B 1
32 30 31 anim12i A B A 1 B 1
33 32 anim1i A B 1 < A 1 1 < B 1 A 1 B 1 1 < A 1 1 < B 1
34 mulgt1 A 1 B 1 1 < A 1 1 < B 1 1 < A 1 B 1
35 33 34 syl A B 1 < A 1 1 < B 1 1 < A 1 B 1
36 35 ex A B 1 < A 1 1 < B 1 1 < A 1 B 1
37 36 adantr A B 2 < A 2 < B 1 < A 1 1 < B 1 1 < A 1 B 1
38 recn A A
39 10 a1i A 1
40 38 39 jca A A 1
41 recn B B
42 10 a1i B 1
43 41 42 jca B B 1
44 40 43 anim12i A B A 1 B 1
45 mulsub A 1 B 1 A 1 B 1 = A B + 1 1 - A 1 + B 1
46 44 45 syl A B A 1 B 1 = A B + 1 1 - A 1 + B 1
47 46 breq2d A B 1 < A 1 B 1 1 < A B + 1 1 - A 1 + B 1
48 47 biimpd A B 1 < A 1 B 1 1 < A B + 1 1 - A 1 + B 1
49 48 adantr A B 2 < A 2 < B 1 < A 1 B 1 1 < A B + 1 1 - A 1 + B 1
50 10 mulid2i 1 1 = 1
51 eqcom 1 1 = 1 1 = 1 1
52 51 biimpi 1 1 = 1 1 = 1 1
53 50 52 mp1i A B 1 = 1 1
54 53 oveq2d A B A B + 1 = A B + 1 1
55 mulid1 A A 1 = A
56 eqcom A 1 = A A = A 1
57 56 biimpi A 1 = A A = A 1
58 55 57 syl A A = A 1
59 38 58 syl A A = A 1
60 59 adantr A B A = A 1
61 mulid1 B B 1 = B
62 41 61 syl B B 1 = B
63 eqcom B 1 = B B = B 1
64 63 biimpi B 1 = B B = B 1
65 62 64 syl B B = B 1
66 65 adantl A B B = B 1
67 60 66 oveq12d A B A + B = A 1 + B 1
68 54 67 oveq12d A B A B + 1 - A + B = A B + 1 1 - A 1 + B 1
69 68 breq2d A B 1 < A B + 1 - A + B 1 < A B + 1 1 - A 1 + B 1
70 readdcl A B A + B
71 5 a1i A B 1
72 remulcl A B A B
73 readdcl A B 1 A B + 1
74 72 71 73 syl2anc A B A B + 1
75 ltaddsub2 A + B 1 A B + 1 A + B + 1 < A B + 1 1 < A B + 1 - A + B
76 70 71 74 75 syl3anc A B A + B + 1 < A B + 1 1 < A B + 1 - A + B
77 ltadd1 A + B A B 1 A + B < A B A + B + 1 < A B + 1
78 70 72 71 77 syl3anc A B A + B < A B A + B + 1 < A B + 1
79 78 bicomd A B A + B + 1 < A B + 1 A + B < A B
80 79 biimpd A B A + B + 1 < A B + 1 A + B < A B
81 76 80 sylbird A B 1 < A B + 1 - A + B A + B < A B
82 69 81 sylbird A B 1 < A B + 1 1 - A 1 + B 1 A + B < A B
83 82 adantr A B 2 < A 2 < B 1 < A B + 1 1 - A 1 + B 1 A + B < A B
84 37 49 83 3syld A B 2 < A 2 < B 1 < A 1 1 < B 1 A + B < A B
85 29 84 mpd A B 2 < A 2 < B A + B < A B