Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( A e. RR /\ 2 < A ) -> 2 < A ) |
2 |
|
2re |
|- 2 e. RR |
3 |
2
|
a1i |
|- ( ( A e. RR /\ 2 < A ) -> 2 e. RR ) |
4 |
|
simpl |
|- ( ( A e. RR /\ 2 < A ) -> A e. RR ) |
5 |
|
1re |
|- 1 e. RR |
6 |
5
|
a1i |
|- ( ( A e. RR /\ 2 < A ) -> 1 e. RR ) |
7 |
|
ltsub1 |
|- ( ( 2 e. RR /\ A e. RR /\ 1 e. RR ) -> ( 2 < A <-> ( 2 - 1 ) < ( A - 1 ) ) ) |
8 |
3 4 6 7
|
syl3anc |
|- ( ( A e. RR /\ 2 < A ) -> ( 2 < A <-> ( 2 - 1 ) < ( A - 1 ) ) ) |
9 |
|
2cn |
|- 2 e. CC |
10 |
|
ax-1cn |
|- 1 e. CC |
11 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
12 |
11
|
eqcomi |
|- ( 1 + 1 ) = 2 |
13 |
9 10 10 12
|
subaddrii |
|- ( 2 - 1 ) = 1 |
14 |
13
|
breq1i |
|- ( ( 2 - 1 ) < ( A - 1 ) <-> 1 < ( A - 1 ) ) |
15 |
14
|
a1i |
|- ( ( A e. RR /\ 2 < A ) -> ( ( 2 - 1 ) < ( A - 1 ) <-> 1 < ( A - 1 ) ) ) |
16 |
8 15
|
bitrd |
|- ( ( A e. RR /\ 2 < A ) -> ( 2 < A <-> 1 < ( A - 1 ) ) ) |
17 |
1 16
|
mpbid |
|- ( ( A e. RR /\ 2 < A ) -> 1 < ( A - 1 ) ) |
18 |
|
simpr |
|- ( ( B e. RR /\ 2 < B ) -> 2 < B ) |
19 |
2
|
a1i |
|- ( ( B e. RR /\ 2 < B ) -> 2 e. RR ) |
20 |
|
simpl |
|- ( ( B e. RR /\ 2 < B ) -> B e. RR ) |
21 |
5
|
a1i |
|- ( ( B e. RR /\ 2 < B ) -> 1 e. RR ) |
22 |
|
ltsub1 |
|- ( ( 2 e. RR /\ B e. RR /\ 1 e. RR ) -> ( 2 < B <-> ( 2 - 1 ) < ( B - 1 ) ) ) |
23 |
19 20 21 22
|
syl3anc |
|- ( ( B e. RR /\ 2 < B ) -> ( 2 < B <-> ( 2 - 1 ) < ( B - 1 ) ) ) |
24 |
13
|
breq1i |
|- ( ( 2 - 1 ) < ( B - 1 ) <-> 1 < ( B - 1 ) ) |
25 |
24
|
a1i |
|- ( ( B e. RR /\ 2 < B ) -> ( ( 2 - 1 ) < ( B - 1 ) <-> 1 < ( B - 1 ) ) ) |
26 |
23 25
|
bitrd |
|- ( ( B e. RR /\ 2 < B ) -> ( 2 < B <-> 1 < ( B - 1 ) ) ) |
27 |
18 26
|
mpbid |
|- ( ( B e. RR /\ 2 < B ) -> 1 < ( B - 1 ) ) |
28 |
17 27
|
anim12i |
|- ( ( ( A e. RR /\ 2 < A ) /\ ( B e. RR /\ 2 < B ) ) -> ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) |
29 |
28
|
an4s |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) |
30 |
|
peano2rem |
|- ( A e. RR -> ( A - 1 ) e. RR ) |
31 |
|
peano2rem |
|- ( B e. RR -> ( B - 1 ) e. RR ) |
32 |
30 31
|
anim12i |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A - 1 ) e. RR /\ ( B - 1 ) e. RR ) ) |
33 |
32
|
anim1i |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) -> ( ( ( A - 1 ) e. RR /\ ( B - 1 ) e. RR ) /\ ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) ) |
34 |
|
mulgt1 |
|- ( ( ( ( A - 1 ) e. RR /\ ( B - 1 ) e. RR ) /\ ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) |
35 |
33 34
|
syl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) |
36 |
35
|
ex |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) ) |
37 |
36
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) ) |
38 |
|
recn |
|- ( A e. RR -> A e. CC ) |
39 |
10
|
a1i |
|- ( A e. RR -> 1 e. CC ) |
40 |
38 39
|
jca |
|- ( A e. RR -> ( A e. CC /\ 1 e. CC ) ) |
41 |
|
recn |
|- ( B e. RR -> B e. CC ) |
42 |
10
|
a1i |
|- ( B e. RR -> 1 e. CC ) |
43 |
41 42
|
jca |
|- ( B e. RR -> ( B e. CC /\ 1 e. CC ) ) |
44 |
40 43
|
anim12i |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A e. CC /\ 1 e. CC ) /\ ( B e. CC /\ 1 e. CC ) ) ) |
45 |
|
mulsub |
|- ( ( ( A e. CC /\ 1 e. CC ) /\ ( B e. CC /\ 1 e. CC ) ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
46 |
44 45
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
47 |
46
|
breq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( A - 1 ) x. ( B - 1 ) ) <-> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) |
48 |
47
|
biimpd |
|- ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( A - 1 ) x. ( B - 1 ) ) -> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) |
49 |
48
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( 1 < ( ( A - 1 ) x. ( B - 1 ) ) -> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) |
50 |
10
|
mulid2i |
|- ( 1 x. 1 ) = 1 |
51 |
|
eqcom |
|- ( ( 1 x. 1 ) = 1 <-> 1 = ( 1 x. 1 ) ) |
52 |
51
|
biimpi |
|- ( ( 1 x. 1 ) = 1 -> 1 = ( 1 x. 1 ) ) |
53 |
50 52
|
mp1i |
|- ( ( A e. RR /\ B e. RR ) -> 1 = ( 1 x. 1 ) ) |
54 |
53
|
oveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A x. B ) + 1 ) = ( ( A x. B ) + ( 1 x. 1 ) ) ) |
55 |
|
mulid1 |
|- ( A e. CC -> ( A x. 1 ) = A ) |
56 |
|
eqcom |
|- ( ( A x. 1 ) = A <-> A = ( A x. 1 ) ) |
57 |
56
|
biimpi |
|- ( ( A x. 1 ) = A -> A = ( A x. 1 ) ) |
58 |
55 57
|
syl |
|- ( A e. CC -> A = ( A x. 1 ) ) |
59 |
38 58
|
syl |
|- ( A e. RR -> A = ( A x. 1 ) ) |
60 |
59
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> A = ( A x. 1 ) ) |
61 |
|
mulid1 |
|- ( B e. CC -> ( B x. 1 ) = B ) |
62 |
41 61
|
syl |
|- ( B e. RR -> ( B x. 1 ) = B ) |
63 |
|
eqcom |
|- ( ( B x. 1 ) = B <-> B = ( B x. 1 ) ) |
64 |
63
|
biimpi |
|- ( ( B x. 1 ) = B -> B = ( B x. 1 ) ) |
65 |
62 64
|
syl |
|- ( B e. RR -> B = ( B x. 1 ) ) |
66 |
65
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> B = ( B x. 1 ) ) |
67 |
60 66
|
oveq12d |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( ( A x. 1 ) + ( B x. 1 ) ) ) |
68 |
54 67
|
oveq12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A x. B ) + 1 ) - ( A + B ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
69 |
68
|
breq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( ( A x. B ) + 1 ) - ( A + B ) ) <-> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) |
70 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
71 |
5
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> 1 e. RR ) |
72 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
73 |
|
readdcl |
|- ( ( ( A x. B ) e. RR /\ 1 e. RR ) -> ( ( A x. B ) + 1 ) e. RR ) |
74 |
72 71 73
|
syl2anc |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A x. B ) + 1 ) e. RR ) |
75 |
|
ltaddsub2 |
|- ( ( ( A + B ) e. RR /\ 1 e. RR /\ ( ( A x. B ) + 1 ) e. RR ) -> ( ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) <-> 1 < ( ( ( A x. B ) + 1 ) - ( A + B ) ) ) ) |
76 |
70 71 74 75
|
syl3anc |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) <-> 1 < ( ( ( A x. B ) + 1 ) - ( A + B ) ) ) ) |
77 |
|
ltadd1 |
|- ( ( ( A + B ) e. RR /\ ( A x. B ) e. RR /\ 1 e. RR ) -> ( ( A + B ) < ( A x. B ) <-> ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) ) ) |
78 |
70 72 71 77
|
syl3anc |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) < ( A x. B ) <-> ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) ) ) |
79 |
78
|
bicomd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) <-> ( A + B ) < ( A x. B ) ) ) |
80 |
79
|
biimpd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) -> ( A + B ) < ( A x. B ) ) ) |
81 |
76 80
|
sylbird |
|- ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( ( A x. B ) + 1 ) - ( A + B ) ) -> ( A + B ) < ( A x. B ) ) ) |
82 |
69 81
|
sylbird |
|- ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) -> ( A + B ) < ( A x. B ) ) ) |
83 |
82
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) -> ( A + B ) < ( A x. B ) ) ) |
84 |
37 49 83
|
3syld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) -> ( A + B ) < ( A x. B ) ) ) |
85 |
29 84
|
mpd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( A + B ) < ( A x. B ) ) |