| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( A e. RR /\ 2 < A ) -> 2 < A ) | 
						
							| 2 |  | 2re |  |-  2 e. RR | 
						
							| 3 | 2 | a1i |  |-  ( ( A e. RR /\ 2 < A ) -> 2 e. RR ) | 
						
							| 4 |  | simpl |  |-  ( ( A e. RR /\ 2 < A ) -> A e. RR ) | 
						
							| 5 |  | 1re |  |-  1 e. RR | 
						
							| 6 | 5 | a1i |  |-  ( ( A e. RR /\ 2 < A ) -> 1 e. RR ) | 
						
							| 7 |  | ltsub1 |  |-  ( ( 2 e. RR /\ A e. RR /\ 1 e. RR ) -> ( 2 < A <-> ( 2 - 1 ) < ( A - 1 ) ) ) | 
						
							| 8 | 3 4 6 7 | syl3anc |  |-  ( ( A e. RR /\ 2 < A ) -> ( 2 < A <-> ( 2 - 1 ) < ( A - 1 ) ) ) | 
						
							| 9 |  | 2cn |  |-  2 e. CC | 
						
							| 10 |  | ax-1cn |  |-  1 e. CC | 
						
							| 11 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 12 | 11 | eqcomi |  |-  ( 1 + 1 ) = 2 | 
						
							| 13 | 9 10 10 12 | subaddrii |  |-  ( 2 - 1 ) = 1 | 
						
							| 14 | 13 | breq1i |  |-  ( ( 2 - 1 ) < ( A - 1 ) <-> 1 < ( A - 1 ) ) | 
						
							| 15 | 14 | a1i |  |-  ( ( A e. RR /\ 2 < A ) -> ( ( 2 - 1 ) < ( A - 1 ) <-> 1 < ( A - 1 ) ) ) | 
						
							| 16 | 8 15 | bitrd |  |-  ( ( A e. RR /\ 2 < A ) -> ( 2 < A <-> 1 < ( A - 1 ) ) ) | 
						
							| 17 | 1 16 | mpbid |  |-  ( ( A e. RR /\ 2 < A ) -> 1 < ( A - 1 ) ) | 
						
							| 18 |  | simpr |  |-  ( ( B e. RR /\ 2 < B ) -> 2 < B ) | 
						
							| 19 | 2 | a1i |  |-  ( ( B e. RR /\ 2 < B ) -> 2 e. RR ) | 
						
							| 20 |  | simpl |  |-  ( ( B e. RR /\ 2 < B ) -> B e. RR ) | 
						
							| 21 | 5 | a1i |  |-  ( ( B e. RR /\ 2 < B ) -> 1 e. RR ) | 
						
							| 22 |  | ltsub1 |  |-  ( ( 2 e. RR /\ B e. RR /\ 1 e. RR ) -> ( 2 < B <-> ( 2 - 1 ) < ( B - 1 ) ) ) | 
						
							| 23 | 19 20 21 22 | syl3anc |  |-  ( ( B e. RR /\ 2 < B ) -> ( 2 < B <-> ( 2 - 1 ) < ( B - 1 ) ) ) | 
						
							| 24 | 13 | breq1i |  |-  ( ( 2 - 1 ) < ( B - 1 ) <-> 1 < ( B - 1 ) ) | 
						
							| 25 | 24 | a1i |  |-  ( ( B e. RR /\ 2 < B ) -> ( ( 2 - 1 ) < ( B - 1 ) <-> 1 < ( B - 1 ) ) ) | 
						
							| 26 | 23 25 | bitrd |  |-  ( ( B e. RR /\ 2 < B ) -> ( 2 < B <-> 1 < ( B - 1 ) ) ) | 
						
							| 27 | 18 26 | mpbid |  |-  ( ( B e. RR /\ 2 < B ) -> 1 < ( B - 1 ) ) | 
						
							| 28 | 17 27 | anim12i |  |-  ( ( ( A e. RR /\ 2 < A ) /\ ( B e. RR /\ 2 < B ) ) -> ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) | 
						
							| 29 | 28 | an4s |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) | 
						
							| 30 |  | peano2rem |  |-  ( A e. RR -> ( A - 1 ) e. RR ) | 
						
							| 31 |  | peano2rem |  |-  ( B e. RR -> ( B - 1 ) e. RR ) | 
						
							| 32 | 30 31 | anim12i |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A - 1 ) e. RR /\ ( B - 1 ) e. RR ) ) | 
						
							| 33 | 32 | anim1i |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) -> ( ( ( A - 1 ) e. RR /\ ( B - 1 ) e. RR ) /\ ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) ) | 
						
							| 34 |  | mulgt1 |  |-  ( ( ( ( A - 1 ) e. RR /\ ( B - 1 ) e. RR ) /\ ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) | 
						
							| 36 | 35 | ex |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) ) | 
						
							| 38 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 39 | 10 | a1i |  |-  ( A e. RR -> 1 e. CC ) | 
						
							| 40 | 38 39 | jca |  |-  ( A e. RR -> ( A e. CC /\ 1 e. CC ) ) | 
						
							| 41 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 42 | 10 | a1i |  |-  ( B e. RR -> 1 e. CC ) | 
						
							| 43 | 41 42 | jca |  |-  ( B e. RR -> ( B e. CC /\ 1 e. CC ) ) | 
						
							| 44 | 40 43 | anim12i |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A e. CC /\ 1 e. CC ) /\ ( B e. CC /\ 1 e. CC ) ) ) | 
						
							| 45 |  | mulsub |  |-  ( ( ( A e. CC /\ 1 e. CC ) /\ ( B e. CC /\ 1 e. CC ) ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) | 
						
							| 47 | 46 | breq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( A - 1 ) x. ( B - 1 ) ) <-> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) | 
						
							| 48 | 47 | biimpd |  |-  ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( A - 1 ) x. ( B - 1 ) ) -> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( 1 < ( ( A - 1 ) x. ( B - 1 ) ) -> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) | 
						
							| 50 | 10 | mullidi |  |-  ( 1 x. 1 ) = 1 | 
						
							| 51 |  | eqcom |  |-  ( ( 1 x. 1 ) = 1 <-> 1 = ( 1 x. 1 ) ) | 
						
							| 52 | 51 | biimpi |  |-  ( ( 1 x. 1 ) = 1 -> 1 = ( 1 x. 1 ) ) | 
						
							| 53 | 50 52 | mp1i |  |-  ( ( A e. RR /\ B e. RR ) -> 1 = ( 1 x. 1 ) ) | 
						
							| 54 | 53 | oveq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A x. B ) + 1 ) = ( ( A x. B ) + ( 1 x. 1 ) ) ) | 
						
							| 55 |  | mulrid |  |-  ( A e. CC -> ( A x. 1 ) = A ) | 
						
							| 56 |  | eqcom |  |-  ( ( A x. 1 ) = A <-> A = ( A x. 1 ) ) | 
						
							| 57 | 56 | biimpi |  |-  ( ( A x. 1 ) = A -> A = ( A x. 1 ) ) | 
						
							| 58 | 55 57 | syl |  |-  ( A e. CC -> A = ( A x. 1 ) ) | 
						
							| 59 | 38 58 | syl |  |-  ( A e. RR -> A = ( A x. 1 ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( A e. RR /\ B e. RR ) -> A = ( A x. 1 ) ) | 
						
							| 61 |  | mulrid |  |-  ( B e. CC -> ( B x. 1 ) = B ) | 
						
							| 62 | 41 61 | syl |  |-  ( B e. RR -> ( B x. 1 ) = B ) | 
						
							| 63 |  | eqcom |  |-  ( ( B x. 1 ) = B <-> B = ( B x. 1 ) ) | 
						
							| 64 | 63 | biimpi |  |-  ( ( B x. 1 ) = B -> B = ( B x. 1 ) ) | 
						
							| 65 | 62 64 | syl |  |-  ( B e. RR -> B = ( B x. 1 ) ) | 
						
							| 66 | 65 | adantl |  |-  ( ( A e. RR /\ B e. RR ) -> B = ( B x. 1 ) ) | 
						
							| 67 | 60 66 | oveq12d |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( ( A x. 1 ) + ( B x. 1 ) ) ) | 
						
							| 68 | 54 67 | oveq12d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A x. B ) + 1 ) - ( A + B ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) | 
						
							| 69 | 68 | breq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( ( A x. B ) + 1 ) - ( A + B ) ) <-> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) | 
						
							| 70 |  | readdcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) | 
						
							| 71 | 5 | a1i |  |-  ( ( A e. RR /\ B e. RR ) -> 1 e. RR ) | 
						
							| 72 |  | remulcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) | 
						
							| 73 |  | readdcl |  |-  ( ( ( A x. B ) e. RR /\ 1 e. RR ) -> ( ( A x. B ) + 1 ) e. RR ) | 
						
							| 74 | 72 71 73 | syl2anc |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A x. B ) + 1 ) e. RR ) | 
						
							| 75 |  | ltaddsub2 |  |-  ( ( ( A + B ) e. RR /\ 1 e. RR /\ ( ( A x. B ) + 1 ) e. RR ) -> ( ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) <-> 1 < ( ( ( A x. B ) + 1 ) - ( A + B ) ) ) ) | 
						
							| 76 | 70 71 74 75 | syl3anc |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) <-> 1 < ( ( ( A x. B ) + 1 ) - ( A + B ) ) ) ) | 
						
							| 77 |  | ltadd1 |  |-  ( ( ( A + B ) e. RR /\ ( A x. B ) e. RR /\ 1 e. RR ) -> ( ( A + B ) < ( A x. B ) <-> ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) ) ) | 
						
							| 78 | 70 72 71 77 | syl3anc |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) < ( A x. B ) <-> ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) ) ) | 
						
							| 79 | 78 | bicomd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) <-> ( A + B ) < ( A x. B ) ) ) | 
						
							| 80 | 79 | biimpd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) + 1 ) < ( ( A x. B ) + 1 ) -> ( A + B ) < ( A x. B ) ) ) | 
						
							| 81 | 76 80 | sylbird |  |-  ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( ( A x. B ) + 1 ) - ( A + B ) ) -> ( A + B ) < ( A x. B ) ) ) | 
						
							| 82 | 69 81 | sylbird |  |-  ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) -> ( A + B ) < ( A x. B ) ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) -> ( A + B ) < ( A x. B ) ) ) | 
						
							| 84 | 37 49 83 | 3syld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) -> ( A + B ) < ( A x. B ) ) ) | 
						
							| 85 | 29 84 | mpd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( A + B ) < ( A x. B ) ) |