Metamath Proof Explorer


Theorem xlt0neg2

Description: Extended real version of lt0neg2 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xlt0neg2 A*0<AA<0

Proof

Step Hyp Ref Expression
1 0xr 0*
2 xltneg 0*A*0<AA<0
3 1 2 mpan A*0<AA<0
4 xneg0 0=0
5 4 breq2i A<0A<0
6 3 5 bitrdi A*0<AA<0