Metamath Proof Explorer


Theorem xmulasslem2

Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulasslem2 0<AA=−∞φ

Proof

Step Hyp Ref Expression
1 breq2 A=−∞0<A0<−∞
2 0xr 0*
3 nltmnf 0*¬0<−∞
4 2 3 ax-mp ¬0<−∞
5 4 pm2.21i 0<−∞φ
6 1 5 biimtrdi A=−∞0<Aφ
7 6 impcom 0<AA=−∞φ