Metamath Proof Explorer


Theorem xmullid

Description: Extended real version of mullid . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmullid A*1𝑒A=A

Proof

Step Hyp Ref Expression
1 1xr 1*
2 xmulcom 1*A*1𝑒A=A𝑒1
3 1 2 mpan A*1𝑒A=A𝑒1
4 xmulrid A*A𝑒1=A
5 3 4 eqtrd A*1𝑒A=A