Metamath Proof Explorer


Theorem xmulm1

Description: Extended real version of mulm1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulm1 A*-1𝑒A=A

Proof

Step Hyp Ref Expression
1 1re 1
2 rexneg 11=1
3 1 2 ax-mp 1=1
4 3 oveq1i 1𝑒A=-1𝑒A
5 1xr 1*
6 xmulneg1 1*A*1𝑒A=1𝑒A
7 5 6 mpan A*1𝑒A=1𝑒A
8 4 7 eqtr3id A*-1𝑒A=1𝑒A
9 xmullid A*1𝑒A=A
10 xnegeq 1𝑒A=A1𝑒A=A
11 9 10 syl A*1𝑒A=A
12 8 11 eqtrd A*-1𝑒A=A