| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
|
rexneg |
⊢ ( 1 ∈ ℝ → -𝑒 1 = - 1 ) |
| 3 |
1 2
|
ax-mp |
⊢ -𝑒 1 = - 1 |
| 4 |
3
|
oveq1i |
⊢ ( -𝑒 1 ·e 𝐴 ) = ( - 1 ·e 𝐴 ) |
| 5 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 6 |
|
xmulneg1 |
⊢ ( ( 1 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -𝑒 1 ·e 𝐴 ) = -𝑒 ( 1 ·e 𝐴 ) ) |
| 7 |
5 6
|
mpan |
⊢ ( 𝐴 ∈ ℝ* → ( -𝑒 1 ·e 𝐴 ) = -𝑒 ( 1 ·e 𝐴 ) ) |
| 8 |
4 7
|
eqtr3id |
⊢ ( 𝐴 ∈ ℝ* → ( - 1 ·e 𝐴 ) = -𝑒 ( 1 ·e 𝐴 ) ) |
| 9 |
|
xmullid |
⊢ ( 𝐴 ∈ ℝ* → ( 1 ·e 𝐴 ) = 𝐴 ) |
| 10 |
|
xnegeq |
⊢ ( ( 1 ·e 𝐴 ) = 𝐴 → -𝑒 ( 1 ·e 𝐴 ) = -𝑒 𝐴 ) |
| 11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ ℝ* → -𝑒 ( 1 ·e 𝐴 ) = -𝑒 𝐴 ) |
| 12 |
8 11
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ* → ( - 1 ·e 𝐴 ) = -𝑒 𝐴 ) |