Metamath Proof Explorer


Theorem xnegex

Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegex AV

Proof

Step Hyp Ref Expression
1 df-xneg A=ifA=+∞−∞ifA=−∞+∞A
2 mnfxr −∞*
3 2 elexi −∞V
4 pnfex +∞V
5 negex AV
6 4 5 ifex ifA=−∞+∞AV
7 3 6 ifex ifA=+∞−∞ifA=−∞+∞AV
8 1 7 eqeltri AV