Metamath Proof Explorer


Theorem xnegmnf

Description: Minus -oo . Remark of BourbakiTop1 p. IV.15. (Contributed by FL, 26-Dec-2011) (Revised by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegmnf −∞=+∞

Proof

Step Hyp Ref Expression
1 df-xneg −∞=if−∞=+∞−∞if−∞=−∞+∞−∞
2 mnfnepnf −∞+∞
3 ifnefalse −∞+∞if−∞=+∞−∞if−∞=−∞+∞−∞=if−∞=−∞+∞−∞
4 2 3 ax-mp if−∞=+∞−∞if−∞=−∞+∞−∞=if−∞=−∞+∞−∞
5 eqid −∞=−∞
6 5 iftruei if−∞=−∞+∞−∞=+∞
7 1 4 6 3eqtri −∞=+∞