Metamath Proof Explorer


Theorem xnegred

Description: An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis xnegred.1 φA*
Assertion xnegred φAA

Proof

Step Hyp Ref Expression
1 xnegred.1 φA*
2 xnegre A*AA
3 1 2 syl φAA