Metamath Proof Explorer


Theorem xnn0ge0

Description: An extended nonnegative integer is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018) (Revised by AV, 10-Dec-2020)

Ref Expression
Assertion xnn0ge0 N0*0N

Proof

Step Hyp Ref Expression
1 elxnn0 N0*N0N=+∞
2 nn0ge0 N00N
3 0lepnf 0+∞
4 breq2 N=+∞0N0+∞
5 3 4 mpbiri N=+∞0N
6 2 5 jaoi N0N=+∞0N
7 1 6 sylbi N0*0N