Database
REAL AND COMPLEX NUMBERS
Integer sets
Extended nonnegative integers
xnn0xr
Next ⟩
0xnn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
xnn0xr
Description:
An extended nonnegative integer is an extended real.
(Contributed by
AV
, 10-Dec-2020)
Ref
Expression
Assertion
xnn0xr
⊢
A
∈
ℕ
0
*
→
A
∈
ℝ
*
Proof
Step
Hyp
Ref
Expression
1
elxnn0
⊢
A
∈
ℕ
0
*
↔
A
∈
ℕ
0
∨
A
=
+∞
2
nn0re
⊢
A
∈
ℕ
0
→
A
∈
ℝ
3
2
rexrd
⊢
A
∈
ℕ
0
→
A
∈
ℝ
*
4
pnfxr
⊢
+∞
∈
ℝ
*
5
eleq1
⊢
A
=
+∞
→
A
∈
ℝ
*
↔
+∞
∈
ℝ
*
6
4
5
mpbiri
⊢
A
=
+∞
→
A
∈
ℝ
*
7
3
6
jaoi
⊢
A
∈
ℕ
0
∨
A
=
+∞
→
A
∈
ℝ
*
8
1
7
sylbi
⊢
A
∈
ℕ
0
*
→
A
∈
ℝ
*