Metamath Proof Explorer


Theorem xp2dju

Description: Two times a cardinal number. Exercise 4.56(g) of Mendelson p. 258. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xp2dju 2𝑜×A=A⊔︀A

Proof

Step Hyp Ref Expression
1 xpundir 1𝑜×A=×A1𝑜×A
2 df2o3 2𝑜=1𝑜
3 df-pr 1𝑜=1𝑜
4 2 3 eqtri 2𝑜=1𝑜
5 4 xpeq1i 2𝑜×A=1𝑜×A
6 df-dju A⊔︀A=×A1𝑜×A
7 1 5 6 3eqtr4i 2𝑜×A=A⊔︀A