Metamath Proof Explorer


Theorem xp2dju

Description: Two times a cardinal number. Exercise 4.56(g) of Mendelson p. 258. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xp2dju ( 2o × 𝐴 ) = ( 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 xpundir ( ( { ∅ } ∪ { 1o } ) × 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐴 ) )
2 df2o3 2o = { ∅ , 1o }
3 df-pr { ∅ , 1o } = ( { ∅ } ∪ { 1o } )
4 2 3 eqtri 2o = ( { ∅ } ∪ { 1o } )
5 4 xpeq1i ( 2o × 𝐴 ) = ( ( { ∅ } ∪ { 1o } ) × 𝐴 )
6 df-dju ( 𝐴𝐴 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐴 ) )
7 1 5 6 3eqtr4i ( 2o × 𝐴 ) = ( 𝐴𝐴 )