Metamath Proof Explorer


Theorem xpcfucco3

Description: Value of composition in the binary product of categories of functors; expressed explicitly. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfuchom2.t T = B FuncCat C × c D FuncCat E
xpcfucco2.o O = comp T
xpcfucco2.f φ F M B Nat C P
xpcfucco2.g φ G N D Nat E Q
xpcfucco2.k φ K P B Nat C R
xpcfucco2.l φ L Q D Nat E S
xpcfucco3.x X = Base B
xpcfucco3.y Y = Base D
xpcfucco3.o1 · ˙ = comp C
xpcfucco3.o2 ˙ = comp E
Assertion xpcfucco3 φ K L M N P Q O R S F G = x X K x 1 st M x 1 st P x · ˙ 1 st R x F x y Y L y 1 st N y 1 st Q y ˙ 1 st S y G y

Proof

Step Hyp Ref Expression
1 xpcfuchom2.t T = B FuncCat C × c D FuncCat E
2 xpcfucco2.o O = comp T
3 xpcfucco2.f φ F M B Nat C P
4 xpcfucco2.g φ G N D Nat E Q
5 xpcfucco2.k φ K P B Nat C R
6 xpcfucco2.l φ L Q D Nat E S
7 xpcfucco3.x X = Base B
8 xpcfucco3.y Y = Base D
9 xpcfucco3.o1 · ˙ = comp C
10 xpcfucco3.o2 ˙ = comp E
11 1 2 3 4 5 6 xpcfucco2 φ K L M N P Q O R S F G = K M P comp B FuncCat C R F L N Q comp D FuncCat E S G
12 eqid B FuncCat C = B FuncCat C
13 eqid B Nat C = B Nat C
14 eqid comp B FuncCat C = comp B FuncCat C
15 12 13 7 9 14 3 5 fucco φ K M P comp B FuncCat C R F = x X K x 1 st M x 1 st P x · ˙ 1 st R x F x
16 eqid D FuncCat E = D FuncCat E
17 eqid D Nat E = D Nat E
18 eqid comp D FuncCat E = comp D FuncCat E
19 16 17 8 10 18 4 6 fucco φ L N Q comp D FuncCat E S G = y Y L y 1 st N y 1 st Q y ˙ 1 st S y G y
20 15 19 opeq12d φ K M P comp B FuncCat C R F L N Q comp D FuncCat E S G = x X K x 1 st M x 1 st P x · ˙ 1 st R x F x y Y L y 1 st N y 1 st Q y ˙ 1 st S y G y
21 11 20 eqtrd φ K L M N P Q O R S F G = x X K x 1 st M x 1 st P x · ˙ 1 st R x F x y Y L y 1 st N y 1 st Q y ˙ 1 st S y G y