Metamath Proof Explorer


Theorem xpcfuchom

Description: Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfucbas.t T = B FuncCat C × c D FuncCat E
xpcfuchomfval.b A = Base T
xpcfuchomfval.k K = Hom T
xpcfuchom.x φ X A
xpcfuchom.y φ Y A
Assertion xpcfuchom φ X K Y = 1 st X B Nat C 1 st Y × 2 nd X D Nat E 2 nd Y

Proof

Step Hyp Ref Expression
1 xpcfucbas.t T = B FuncCat C × c D FuncCat E
2 xpcfuchomfval.b A = Base T
3 xpcfuchomfval.k K = Hom T
4 xpcfuchom.x φ X A
5 xpcfuchom.y φ Y A
6 eqid B FuncCat C = B FuncCat C
7 eqid B Nat C = B Nat C
8 6 7 fuchom B Nat C = Hom B FuncCat C
9 eqid D FuncCat E = D FuncCat E
10 eqid D Nat E = D Nat E
11 9 10 fuchom D Nat E = Hom D FuncCat E
12 1 2 8 11 3 4 5 xpchom φ X K Y = 1 st X B Nat C 1 st Y × 2 nd X D Nat E 2 nd Y