Metamath Proof Explorer


Theorem xpord2ind

Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses xpord2ind.1 RFrA
xpord2ind.2 RPoA
xpord2ind.3 RSeA
xpord2ind.4 SFrB
xpord2ind.5 SPoB
xpord2ind.6 SSeB
xpord2ind.7 a=cφψ
xpord2ind.8 b=dψχ
xpord2ind.9 a=cθχ
xpord2ind.11 a=Xφτ
xpord2ind.12 b=Yτη
xpord2ind.i aAbBcPredRAadPredSBbχcPredRAaψdPredSBbθφ
Assertion xpord2ind XAYBη

Proof

Step Hyp Ref Expression
1 xpord2ind.1 RFrA
2 xpord2ind.2 RPoA
3 xpord2ind.3 RSeA
4 xpord2ind.4 SFrB
5 xpord2ind.5 SPoB
6 xpord2ind.6 SSeB
7 xpord2ind.7 a=cφψ
8 xpord2ind.8 b=dψχ
9 xpord2ind.9 a=cθχ
10 xpord2ind.11 a=Xφτ
11 xpord2ind.12 b=Yτη
12 xpord2ind.i aAbBcPredRAadPredSBbχcPredRAaψdPredSBbθφ
13 eqid xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy
14 13 1 2 3 4 5 6 7 8 9 10 11 12 xpord2indlem XAYBη