Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordering on Cartesian products
xpord2ind
Metamath Proof Explorer
Description: Induction over the Cartesian product ordering. Note that the
substitutions cover all possible cases of membership in the predecessor
class. (Contributed by Scott Fenton , 22-Aug-2024)
Ref
Expression
Hypotheses
xpord2ind.1
xpord2ind.2
xpord2ind.3
xpord2ind.4
xpord2ind.5
xpord2ind.6
xpord2ind.7
xpord2ind.8
xpord2ind.9
xpord2ind.11
xpord2ind.12
xpord2ind.i
Assertion
xpord2ind
Proof
Step
Hyp
Ref
Expression
1
xpord2ind.1
2
xpord2ind.2
3
xpord2ind.3
4
xpord2ind.4
5
xpord2ind.5
6
xpord2ind.6
7
xpord2ind.7
8
xpord2ind.8
9
xpord2ind.9
10
xpord2ind.11
11
xpord2ind.12
12
xpord2ind.i
13
eqid
14
13 1 2 3 4 5 6 7 8 9 10 11 12
xpord2indlem