Metamath Proof Explorer


Theorem xpsff1o2

Description: The function appearing in xpsval is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = { (/) , 1o } . (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Hypothesis xpsff1o.f F=xA,yBx1𝑜y
Assertion xpsff1o2 F:A×B1-1 ontoranF

Proof

Step Hyp Ref Expression
1 xpsff1o.f F=xA,yBx1𝑜y
2 1 xpsff1o F:A×B1-1 ontok2𝑜ifk=AB
3 f1of1 F:A×B1-1 ontok2𝑜ifk=ABF:A×B1-1k2𝑜ifk=AB
4 f1f1orn F:A×B1-1k2𝑜ifk=ABF:A×B1-1 ontoranF
5 2 3 4 mp2b F:A×B1-1 ontoranF