Metamath Proof Explorer


Theorem xpsfrn

Description: A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypothesis xpsff1o.f F=xA,yBx1𝑜y
Assertion xpsfrn ranF=k2𝑜ifk=AB

Proof

Step Hyp Ref Expression
1 xpsff1o.f F=xA,yBx1𝑜y
2 1 xpsff1o F:A×B1-1 ontok2𝑜ifk=AB
3 f1ofo F:A×B1-1 ontok2𝑜ifk=ABF:A×Bontok2𝑜ifk=AB
4 forn F:A×Bontok2𝑜ifk=ABranF=k2𝑜ifk=AB
5 2 3 4 mp2b ranF=k2𝑜ifk=AB