Metamath Proof Explorer


Theorem xpsfval

Description: The value of the function appearing in xpsval . (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypothesis xpsff1o.f F=xA,yBx1𝑜y
Assertion xpsfval XAYBXFY=X1𝑜Y

Proof

Step Hyp Ref Expression
1 xpsff1o.f F=xA,yBx1𝑜y
2 simpl x=Xy=Yx=X
3 2 opeq2d x=Xy=Yx=X
4 simpr x=Xy=Yy=Y
5 4 opeq2d x=Xy=Y1𝑜y=1𝑜Y
6 3 5 preq12d x=Xy=Yx1𝑜y=X1𝑜Y
7 prex X1𝑜YV
8 6 1 7 ovmpoa XAYBXFY=X1𝑜Y