| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpsff1o.f |
|- F = ( x e. A , y e. B |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 2 |
|
simpl |
|- ( ( x = X /\ y = Y ) -> x = X ) |
| 3 |
2
|
opeq2d |
|- ( ( x = X /\ y = Y ) -> <. (/) , x >. = <. (/) , X >. ) |
| 4 |
|
simpr |
|- ( ( x = X /\ y = Y ) -> y = Y ) |
| 5 |
4
|
opeq2d |
|- ( ( x = X /\ y = Y ) -> <. 1o , y >. = <. 1o , Y >. ) |
| 6 |
3 5
|
preq12d |
|- ( ( x = X /\ y = Y ) -> { <. (/) , x >. , <. 1o , y >. } = { <. (/) , X >. , <. 1o , Y >. } ) |
| 7 |
|
prex |
|- { <. (/) , X >. , <. 1o , Y >. } e. _V |
| 8 |
6 1 7
|
ovmpoa |
|- ( ( X e. A /\ Y e. B ) -> ( X F Y ) = { <. (/) , X >. , <. 1o , Y >. } ) |