Metamath Proof Explorer


Theorem xpsmul

Description: Value of the multiplication operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses xpsval.t T=R×𝑠S
xpsval.x X=BaseR
xpsval.y Y=BaseS
xpsval.1 φRV
xpsval.2 φSW
xpsadd.3 φAX
xpsadd.4 φBY
xpsadd.5 φCX
xpsadd.6 φDY
xpsadd.7 φA·˙CX
xpsadd.8 φB×˙DY
xpsmul.m ·˙=R
xpsmul.n ×˙=S
xpsmul.p ˙=T
Assertion xpsmul φAB˙CD=A·˙CB×˙D

Proof

Step Hyp Ref Expression
1 xpsval.t T=R×𝑠S
2 xpsval.x X=BaseR
3 xpsval.y Y=BaseS
4 xpsval.1 φRV
5 xpsval.2 φSW
6 xpsadd.3 φAX
7 xpsadd.4 φBY
8 xpsadd.5 φCX
9 xpsadd.6 φDY
10 xpsadd.7 φA·˙CX
11 xpsadd.8 φB×˙DY
12 xpsmul.m ·˙=R
13 xpsmul.n ×˙=S
14 xpsmul.p ˙=T
15 eqid xX,yYx1𝑜y=xX,yYx1𝑜y
16 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
17 15 xpsff1o2 xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜y
18 f1ocnv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
19 17 18 mp1i φxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
20 f1ofo xX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×YxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
21 19 20 syl φxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
22 19 f1ocpbl φaranxX,yYx1𝑜ybranxX,yYx1𝑜ycranxX,yYx1𝑜ydranxX,yYx1𝑜yxX,yYx1𝑜y-1a=xX,yYx1𝑜y-1cxX,yYx1𝑜y-1b=xX,yYx1𝑜y-1dxX,yYx1𝑜y-1aScalarR𝑠R1𝑜Sb=xX,yYx1𝑜y-1cScalarR𝑠R1𝑜Sd
23 eqid ScalarR=ScalarR
24 1 2 3 4 5 15 23 16 xpsval φT=xX,yYx1𝑜y-1𝑠ScalarR𝑠R1𝑜S
25 1 2 3 4 5 15 23 16 xpsrnbas φranxX,yYx1𝑜y=BaseScalarR𝑠R1𝑜S
26 ovexd φScalarR𝑠R1𝑜SV
27 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
28 21 22 24 25 26 27 14 imasmulval φA1𝑜BranxX,yYx1𝑜yC1𝑜DranxX,yYx1𝑜yxX,yYx1𝑜y-1A1𝑜B˙xX,yYx1𝑜y-1C1𝑜D=xX,yYx1𝑜y-1A1𝑜BScalarR𝑠R1𝑜SC1𝑜D
29 eqid BaseScalarR𝑠R1𝑜S=BaseScalarR𝑠R1𝑜S
30 fvexd R1𝑜SFn2𝑜A1𝑜BBaseScalarR𝑠R1𝑜SC1𝑜DBaseScalarR𝑠R1𝑜SScalarRV
31 2on 2𝑜On
32 31 a1i R1𝑜SFn2𝑜A1𝑜BBaseScalarR𝑠R1𝑜SC1𝑜DBaseScalarR𝑠R1𝑜S2𝑜On
33 simp1 R1𝑜SFn2𝑜A1𝑜BBaseScalarR𝑠R1𝑜SC1𝑜DBaseScalarR𝑠R1𝑜SR1𝑜SFn2𝑜
34 simp2 R1𝑜SFn2𝑜A1𝑜BBaseScalarR𝑠R1𝑜SC1𝑜DBaseScalarR𝑠R1𝑜SA1𝑜BBaseScalarR𝑠R1𝑜S
35 simp3 R1𝑜SFn2𝑜A1𝑜BBaseScalarR𝑠R1𝑜SC1𝑜DBaseScalarR𝑠R1𝑜SC1𝑜DBaseScalarR𝑠R1𝑜S
36 16 29 30 32 33 34 35 27 prdsmulrval R1𝑜SFn2𝑜A1𝑜BBaseScalarR𝑠R1𝑜SC1𝑜DBaseScalarR𝑠R1𝑜SA1𝑜BScalarR𝑠R1𝑜SC1𝑜D=k2𝑜A1𝑜BkR1𝑜SkC1𝑜Dk
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 28 36 xpsaddlem φAB˙CD=A·˙CB×˙D