Metamath Proof Explorer


Theorem xpsnopab

Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020)

Ref Expression
Assertion xpsnopab X×C=ab|a=XbC

Proof

Step Hyp Ref Expression
1 df-xp X×C=ab|aXbC
2 velsn aXa=X
3 2 anbi1i aXbCa=XbC
4 3 opabbii ab|aXbC=ab|a=XbC
5 1 4 eqtri X×C=ab|a=XbC