Metamath Proof Explorer


Theorem xrleid

Description: 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrleid A*AA

Proof

Step Hyp Ref Expression
1 eqid A=A
2 1 olci A<AA=A
3 xrleloe A*A*AAA<AA=A
4 2 3 mpbiri A*A*AA
5 4 anidms A*AA