Metamath Proof Explorer


Theorem xrleneltd

Description: 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrleneltd.a φA*
xrleneltd.b φB*
xrleneltd.alb φAB
xrleneltd.anb φAB
Assertion xrleneltd φA<B

Proof

Step Hyp Ref Expression
1 xrleneltd.a φA*
2 xrleneltd.b φB*
3 xrleneltd.alb φAB
4 xrleneltd.anb φAB
5 4 necomd φBA
6 xrleltne A*B*ABA<BBA
7 1 2 3 6 syl3anc φA<BBA
8 5 7 mpbird φA<B