Metamath Proof Explorer
		
		
		
		Description:  'Less than or equal to' and 'not equals' implies 'less than', for
       extended reals.  (Contributed by Glauco Siliprandi, 17-Aug-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | xrleneltd.a |  | 
					
						|  |  | xrleneltd.b |  | 
					
						|  |  | xrleneltd.alb |  | 
					
						|  |  | xrleneltd.anb |  | 
				
					|  | Assertion | xrleneltd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrleneltd.a |  | 
						
							| 2 |  | xrleneltd.b |  | 
						
							| 3 |  | xrleneltd.alb |  | 
						
							| 4 |  | xrleneltd.anb |  | 
						
							| 5 | 4 | necomd |  | 
						
							| 6 |  | xrleltne |  | 
						
							| 7 | 1 2 3 6 | syl3anc |  | 
						
							| 8 | 5 7 | mpbird |  |