Metamath Proof Explorer


Theorem xrltnled

Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses xrltnled.1 φA*
xrltnled.2 φB*
Assertion xrltnled φA<B¬BA

Proof

Step Hyp Ref Expression
1 xrltnled.1 φA*
2 xrltnled.2 φB*
3 xrltnle A*B*A<B¬BA
4 1 2 3 syl2anc φA<B¬BA