Metamath Proof Explorer


Theorem xrltnr

Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion xrltnr A*¬A<A

Proof

Step Hyp Ref Expression
1 elxr A*AA=+∞A=−∞
2 ltnr A¬A<A
3 pnfnre +∞
4 3 neli ¬+∞
5 4 intnan ¬+∞+∞
6 5 intnanr ¬+∞+∞+∞<+∞
7 pnfnemnf +∞−∞
8 7 neii ¬+∞=−∞
9 8 intnanr ¬+∞=−∞+∞=+∞
10 6 9 pm3.2ni ¬+∞+∞+∞<+∞+∞=−∞+∞=+∞
11 4 intnanr ¬+∞+∞=+∞
12 4 intnan ¬+∞=−∞+∞
13 11 12 pm3.2ni ¬+∞+∞=+∞+∞=−∞+∞
14 10 13 pm3.2ni ¬+∞+∞+∞<+∞+∞=−∞+∞=+∞+∞+∞=+∞+∞=−∞+∞
15 pnfxr +∞*
16 ltxr +∞*+∞*+∞<+∞+∞+∞+∞<+∞+∞=−∞+∞=+∞+∞+∞=+∞+∞=−∞+∞
17 15 15 16 mp2an +∞<+∞+∞+∞+∞<+∞+∞=−∞+∞=+∞+∞+∞=+∞+∞=−∞+∞
18 14 17 mtbir ¬+∞<+∞
19 breq12 A=+∞A=+∞A<A+∞<+∞
20 19 anidms A=+∞A<A+∞<+∞
21 18 20 mtbiri A=+∞¬A<A
22 mnfnre −∞
23 22 neli ¬−∞
24 23 intnan ¬−∞−∞
25 24 intnanr ¬−∞−∞−∞<−∞
26 7 nesymi ¬−∞=+∞
27 26 intnan ¬−∞=−∞−∞=+∞
28 25 27 pm3.2ni ¬−∞−∞−∞<−∞−∞=−∞−∞=+∞
29 23 intnanr ¬−∞−∞=+∞
30 23 intnan ¬−∞=−∞−∞
31 29 30 pm3.2ni ¬−∞−∞=+∞−∞=−∞−∞
32 28 31 pm3.2ni ¬−∞−∞−∞<−∞−∞=−∞−∞=+∞−∞−∞=+∞−∞=−∞−∞
33 mnfxr −∞*
34 ltxr −∞*−∞*−∞<−∞−∞−∞−∞<−∞−∞=−∞−∞=+∞−∞−∞=+∞−∞=−∞−∞
35 33 33 34 mp2an −∞<−∞−∞−∞−∞<−∞−∞=−∞−∞=+∞−∞−∞=+∞−∞=−∞−∞
36 32 35 mtbir ¬−∞<−∞
37 breq12 A=−∞A=−∞A<A−∞<−∞
38 37 anidms A=−∞A<A−∞<−∞
39 36 38 mtbiri A=−∞¬A<A
40 2 21 39 3jaoi AA=+∞A=−∞¬A<A
41 1 40 sylbi A*¬A<A