Metamath Proof Explorer


Theorem xrncnvepresex

Description: Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion xrncnvepresex A V R W R E -1 A V

Proof

Step Hyp Ref Expression
1 cnvepresex A V E -1 A V
2 1 adantr A V R W E -1 A V
3 xrnresex A V R W E -1 A V R E -1 A V
4 2 3 mpd3an3 A V R W R E -1 A V