Metamath Proof Explorer


Theorem xrncnvepresex

Description: Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion xrncnvepresex
|- ( ( A e. V /\ R e. W ) -> ( R |X. ( `' _E |` A ) ) e. _V )

Proof

Step Hyp Ref Expression
1 cnvepresex
 |-  ( A e. V -> ( `' _E |` A ) e. _V )
2 1 adantr
 |-  ( ( A e. V /\ R e. W ) -> ( `' _E |` A ) e. _V )
3 xrnresex
 |-  ( ( A e. V /\ R e. W /\ ( `' _E |` A ) e. _V ) -> ( R |X. ( `' _E |` A ) ) e. _V )
4 2 3 mpd3an3
 |-  ( ( A e. V /\ R e. W ) -> ( R |X. ( `' _E |` A ) ) e. _V )