Step |
Hyp |
Ref |
Expression |
1 |
|
xrnres3 |
|- ( ( R |X. S ) |` A ) = ( ( R |` A ) |X. ( S |` A ) ) |
2 |
|
xrnres2 |
|- ( ( R |X. S ) |` A ) = ( R |X. ( S |` A ) ) |
3 |
1 2
|
eqtr3i |
|- ( ( R |` A ) |X. ( S |` A ) ) = ( R |X. ( S |` A ) ) |
4 |
|
dfres4 |
|- ( R |` A ) = ( R i^i ( A X. ran ( R |` A ) ) ) |
5 |
|
dfres4 |
|- ( S |` A ) = ( S i^i ( A X. ran ( S |` A ) ) ) |
6 |
4 5
|
xrneq12i |
|- ( ( R |` A ) |X. ( S |` A ) ) = ( ( R i^i ( A X. ran ( R |` A ) ) ) |X. ( S i^i ( A X. ran ( S |` A ) ) ) ) |
7 |
|
simp1 |
|- ( ( A e. V /\ R e. W /\ ( S |` A ) e. X ) -> A e. V ) |
8 |
|
resexg |
|- ( R e. W -> ( R |` A ) e. _V ) |
9 |
|
rnexg |
|- ( ( R |` A ) e. _V -> ran ( R |` A ) e. _V ) |
10 |
8 9
|
syl |
|- ( R e. W -> ran ( R |` A ) e. _V ) |
11 |
10
|
3ad2ant2 |
|- ( ( A e. V /\ R e. W /\ ( S |` A ) e. X ) -> ran ( R |` A ) e. _V ) |
12 |
|
rnexg |
|- ( ( S |` A ) e. X -> ran ( S |` A ) e. _V ) |
13 |
12
|
3ad2ant3 |
|- ( ( A e. V /\ R e. W /\ ( S |` A ) e. X ) -> ran ( S |` A ) e. _V ) |
14 |
|
inxpxrn |
|- ( ( R i^i ( A X. ran ( R |` A ) ) ) |X. ( S i^i ( A X. ran ( S |` A ) ) ) ) = ( ( R |X. S ) i^i ( A X. ( ran ( R |` A ) X. ran ( S |` A ) ) ) ) |
15 |
|
xrninxpex |
|- ( ( A e. V /\ ran ( R |` A ) e. _V /\ ran ( S |` A ) e. _V ) -> ( ( R |X. S ) i^i ( A X. ( ran ( R |` A ) X. ran ( S |` A ) ) ) ) e. _V ) |
16 |
14 15
|
eqeltrid |
|- ( ( A e. V /\ ran ( R |` A ) e. _V /\ ran ( S |` A ) e. _V ) -> ( ( R i^i ( A X. ran ( R |` A ) ) ) |X. ( S i^i ( A X. ran ( S |` A ) ) ) ) e. _V ) |
17 |
7 11 13 16
|
syl3anc |
|- ( ( A e. V /\ R e. W /\ ( S |` A ) e. X ) -> ( ( R i^i ( A X. ran ( R |` A ) ) ) |X. ( S i^i ( A X. ran ( S |` A ) ) ) ) e. _V ) |
18 |
6 17
|
eqeltrid |
|- ( ( A e. V /\ R e. W /\ ( S |` A ) e. X ) -> ( ( R |` A ) |X. ( S |` A ) ) e. _V ) |
19 |
3 18
|
eqeltrrid |
|- ( ( A e. V /\ R e. W /\ ( S |` A ) e. X ) -> ( R |X. ( S |` A ) ) e. _V ) |