Metamath Proof Explorer


Theorem xrnidresex

Description: Sufficient condition for a range Cartesian product with restricted identity to be a set. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion xrnidresex
|- ( ( A e. V /\ R e. W ) -> ( R |X. ( _I |` A ) ) e. _V )

Proof

Step Hyp Ref Expression
1 resiexg
 |-  ( A e. V -> ( _I |` A ) e. _V )
2 1 adantr
 |-  ( ( A e. V /\ R e. W ) -> ( _I |` A ) e. _V )
3 xrnresex
 |-  ( ( A e. V /\ R e. W /\ ( _I |` A ) e. _V ) -> ( R |X. ( _I |` A ) ) e. _V )
4 2 3 mpd3an3
 |-  ( ( A e. V /\ R e. W ) -> ( R |X. ( _I |` A ) ) e. _V )