Metamath Proof Explorer


Theorem xrnidresex

Description: Sufficient condition for a range Cartesian product with restricted identity to be a set. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion xrnidresex ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 ⋉ ( I ↾ 𝐴 ) ) ∈ V )

Proof

Step Hyp Ref Expression
1 resiexg ( 𝐴𝑉 → ( I ↾ 𝐴 ) ∈ V )
2 1 adantr ( ( 𝐴𝑉𝑅𝑊 ) → ( I ↾ 𝐴 ) ∈ V )
3 xrnresex ( ( 𝐴𝑉𝑅𝑊 ∧ ( I ↾ 𝐴 ) ∈ V ) → ( 𝑅 ⋉ ( I ↾ 𝐴 ) ) ∈ V )
4 2 3 mpd3an3 ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 ⋉ ( I ↾ 𝐴 ) ) ∈ V )