Step |
Hyp |
Ref |
Expression |
1 |
|
xrnrel |
|- Rel ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) |
2 |
|
relinxp |
|- Rel ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) |
3 |
|
brxrn2 |
|- ( u e. _V -> ( u ( R |X. S ) x <-> E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) |
4 |
3
|
elv |
|- ( u ( R |X. S ) x <-> E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) |
5 |
4
|
anbi2i |
|- ( ( u e. A /\ u ( R |X. S ) x ) <-> ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) |
6 |
5
|
anbi2i |
|- ( ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
7 |
|
xrninxp2 |
|- ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) = { <. u , x >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } |
8 |
7
|
brabidgaw |
|- ( u ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) x <-> ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) ) |
9 |
|
brxrn2 |
|- ( u e. _V -> ( u ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) x <-> E. y E. z ( x = <. y , z >. /\ u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) ) |
10 |
9
|
elv |
|- ( u ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) x <-> E. y E. z ( x = <. y , z >. /\ u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) |
11 |
|
3anass |
|- ( ( x = <. y , z >. /\ u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) <-> ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) ) |
12 |
11
|
2exbii |
|- ( E. y E. z ( x = <. y , z >. /\ u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) <-> E. y E. z ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) ) |
13 |
|
brinxp2 |
|- ( u ( R i^i ( A X. B ) ) y <-> ( ( u e. A /\ y e. B ) /\ u R y ) ) |
14 |
|
brinxp2 |
|- ( u ( S i^i ( A X. C ) ) z <-> ( ( u e. A /\ z e. C ) /\ u S z ) ) |
15 |
13 14
|
anbi12i |
|- ( ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) <-> ( ( ( u e. A /\ y e. B ) /\ u R y ) /\ ( ( u e. A /\ z e. C ) /\ u S z ) ) ) |
16 |
|
anan |
|- ( ( ( ( u e. A /\ y e. B ) /\ u R y ) /\ ( ( u e. A /\ z e. C ) /\ u S z ) ) <-> ( ( y e. B /\ z e. C ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
17 |
15 16
|
bitri |
|- ( ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) <-> ( ( y e. B /\ z e. C ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
18 |
17
|
anbi2i |
|- ( ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( x = <. y , z >. /\ ( ( y e. B /\ z e. C ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) ) |
19 |
|
anass |
|- ( ( ( x = <. y , z >. /\ ( y e. B /\ z e. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( x = <. y , z >. /\ ( ( y e. B /\ z e. C ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) ) |
20 |
|
eqelb |
|- ( ( x = <. y , z >. /\ x e. ( B X. C ) ) <-> ( x = <. y , z >. /\ <. y , z >. e. ( B X. C ) ) ) |
21 |
|
opelxp |
|- ( <. y , z >. e. ( B X. C ) <-> ( y e. B /\ z e. C ) ) |
22 |
21
|
anbi2i |
|- ( ( x = <. y , z >. /\ <. y , z >. e. ( B X. C ) ) <-> ( x = <. y , z >. /\ ( y e. B /\ z e. C ) ) ) |
23 |
20 22
|
bitr2i |
|- ( ( x = <. y , z >. /\ ( y e. B /\ z e. C ) ) <-> ( x = <. y , z >. /\ x e. ( B X. C ) ) ) |
24 |
23
|
anbi1i |
|- ( ( ( x = <. y , z >. /\ ( y e. B /\ z e. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( ( x = <. y , z >. /\ x e. ( B X. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
25 |
18 19 24
|
3bitr2i |
|- ( ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( ( x = <. y , z >. /\ x e. ( B X. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
26 |
|
ancom |
|- ( ( x = <. y , z >. /\ x e. ( B X. C ) ) <-> ( x e. ( B X. C ) /\ x = <. y , z >. ) ) |
27 |
26
|
anbi1i |
|- ( ( ( x = <. y , z >. /\ x e. ( B X. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( ( x e. ( B X. C ) /\ x = <. y , z >. ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
28 |
|
anass |
|- ( ( ( x e. ( B X. C ) /\ x = <. y , z >. ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( x e. ( B X. C ) /\ ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) ) |
29 |
25 27 28
|
3bitri |
|- ( ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( x e. ( B X. C ) /\ ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) ) |
30 |
|
an12 |
|- ( ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( u e. A /\ ( x = <. y , z >. /\ ( u R y /\ u S z ) ) ) ) |
31 |
|
3anass |
|- ( ( x = <. y , z >. /\ u R y /\ u S z ) <-> ( x = <. y , z >. /\ ( u R y /\ u S z ) ) ) |
32 |
31
|
anbi2i |
|- ( ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) <-> ( u e. A /\ ( x = <. y , z >. /\ ( u R y /\ u S z ) ) ) ) |
33 |
30 32
|
bitr4i |
|- ( ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) |
34 |
33
|
anbi2i |
|- ( ( x e. ( B X. C ) /\ ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
35 |
29 34
|
bitri |
|- ( ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
36 |
35
|
2exbii |
|- ( E. y E. z ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> E. y E. z ( x e. ( B X. C ) /\ ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
37 |
|
19.42vv |
|- ( E. y E. z ( x e. ( B X. C ) /\ ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) <-> ( x e. ( B X. C ) /\ E. y E. z ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
38 |
|
19.42vv |
|- ( E. y E. z ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) <-> ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) |
39 |
38
|
anbi2i |
|- ( ( x e. ( B X. C ) /\ E. y E. z ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
40 |
36 37 39
|
3bitri |
|- ( E. y E. z ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
41 |
10 12 40
|
3bitri |
|- ( u ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) x <-> ( x e. ( B X. C ) /\ ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
42 |
6 8 41
|
3bitr4ri |
|- ( u ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) x <-> u ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) x ) |
43 |
1 2 42
|
eqbrriv |
|- ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) = ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) |