Step |
Hyp |
Ref |
Expression |
1 |
|
xrnrel |
⊢ Rel ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) |
2 |
|
relinxp |
⊢ Rel ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) |
3 |
|
brxrn2 |
⊢ ( 𝑢 ∈ V → ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
4 |
3
|
elv |
⊢ ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
6 |
5
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
7 |
|
xrninxp2 |
⊢ ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = { 〈 𝑢 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) } |
8 |
7
|
brabidgaw |
⊢ ( 𝑢 ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) 𝑥 ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) ) |
9 |
|
brxrn2 |
⊢ ( 𝑢 ∈ V → ( 𝑢 ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) 𝑥 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ) |
10 |
9
|
elv |
⊢ ( 𝑢 ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) 𝑥 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) |
11 |
|
3anass |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ) |
12 |
11
|
2exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ) |
13 |
|
brinxp2 |
⊢ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 𝑅 𝑦 ) ) |
14 |
|
brinxp2 |
⊢ ( 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑢 𝑆 𝑧 ) ) |
15 |
13 14
|
anbi12i |
⊢ ( ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ↔ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 𝑅 𝑦 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑢 𝑆 𝑧 ) ) ) |
16 |
|
anan |
⊢ ( ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 𝑅 𝑦 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑢 𝑆 𝑧 ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
17 |
15 16
|
bitri |
⊢ ( ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
18 |
17
|
anbi2i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ) |
19 |
|
anass |
⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ) |
20 |
|
eqelb |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 〈 𝑦 , 𝑧 〉 ∈ ( 𝐵 × 𝐶 ) ) ) |
21 |
|
opelxp |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
22 |
21
|
anbi2i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 〈 𝑦 , 𝑧 〉 ∈ ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ) |
23 |
20 22
|
bitr2i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ) |
24 |
23
|
anbi1i |
⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
25 |
18 19 24
|
3bitr2i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
26 |
|
ancom |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) ) |
27 |
26
|
anbi1i |
⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
28 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ) |
29 |
25 27 28
|
3bitri |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ) |
30 |
|
an12 |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
31 |
|
3anass |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
32 |
31
|
anbi2i |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
33 |
30 32
|
bitr4i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
34 |
33
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
35 |
29 34
|
bitri |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
36 |
35
|
2exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
37 |
|
19.42vv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
38 |
|
19.42vv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
39 |
38
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
40 |
36 37 39
|
3bitri |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
41 |
10 12 40
|
3bitri |
⊢ ( 𝑢 ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) 𝑥 ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
42 |
6 8 41
|
3bitr4ri |
⊢ ( 𝑢 ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) 𝑥 ↔ 𝑢 ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) 𝑥 ) |
43 |
1 2 42
|
eqbrriv |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) = ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) |