| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrnrel |
⊢ Rel ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) |
| 2 |
|
relinxp |
⊢ Rel ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) |
| 3 |
|
brxrn2 |
⊢ ( 𝑢 ∈ V → ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
| 4 |
3
|
elv |
⊢ ( 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) |
| 5 |
4
|
anbi2i |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
| 6 |
5
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 7 |
|
xrninxp2 |
⊢ ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = { 〈 𝑢 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) } |
| 8 |
7
|
brabidgaw |
⊢ ( 𝑢 ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) 𝑥 ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ( 𝑅 ⋉ 𝑆 ) 𝑥 ) ) ) |
| 9 |
|
brxrn2 |
⊢ ( 𝑢 ∈ V → ( 𝑢 ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) 𝑥 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ) |
| 10 |
9
|
elv |
⊢ ( 𝑢 ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) 𝑥 ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) |
| 11 |
|
3anass |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ) |
| 12 |
11
|
2exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ) |
| 13 |
|
brinxp2 |
⊢ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 𝑅 𝑦 ) ) |
| 14 |
|
brinxp2 |
⊢ ( 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑢 𝑆 𝑧 ) ) |
| 15 |
13 14
|
anbi12i |
⊢ ( ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ↔ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 𝑅 𝑦 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑢 𝑆 𝑧 ) ) ) |
| 16 |
|
anan |
⊢ ( ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 𝑅 𝑦 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑢 𝑆 𝑧 ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 17 |
15 16
|
bitri |
⊢ ( ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 18 |
17
|
anbi2i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ) |
| 19 |
|
anass |
⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ) |
| 20 |
|
eqelb |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 〈 𝑦 , 𝑧 〉 ∈ ( 𝐵 × 𝐶 ) ) ) |
| 21 |
|
opelxp |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
| 22 |
21
|
anbi2i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 〈 𝑦 , 𝑧 〉 ∈ ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ) |
| 23 |
20 22
|
bitr2i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ) |
| 24 |
23
|
anbi1i |
⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 25 |
18 19 24
|
3bitr2i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 26 |
|
ancom |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) ) |
| 27 |
26
|
anbi1i |
⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 28 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ) |
| 29 |
25 27 28
|
3bitri |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ) |
| 30 |
|
an12 |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 31 |
|
3anass |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
| 32 |
31
|
anbi2i |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 33 |
30 32
|
bitr4i |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
| 34 |
33
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 35 |
29 34
|
bitri |
⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 36 |
35
|
2exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 37 |
|
19.42vv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 38 |
|
19.42vv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) |
| 39 |
38
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑢 ∈ 𝐴 ∧ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 40 |
36 37 39
|
3bitri |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑢 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ∧ 𝑢 ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) 𝑧 ) ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 41 |
10 12 40
|
3bitri |
⊢ ( 𝑢 ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) 𝑥 ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝑢 𝑅 𝑦 ∧ 𝑢 𝑆 𝑧 ) ) ) ) |
| 42 |
6 8 41
|
3bitr4ri |
⊢ ( 𝑢 ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) 𝑥 ↔ 𝑢 ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) 𝑥 ) |
| 43 |
1 2 42
|
eqbrriv |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × 𝐶 ) ) ) = ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) |